If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14b^2=16
We move all terms to the left:
14b^2-(16)=0
a = 14; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·14·(-16)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*14}=\frac{0-8\sqrt{14}}{28} =-\frac{8\sqrt{14}}{28} =-\frac{2\sqrt{14}}{7} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*14}=\frac{0+8\sqrt{14}}{28} =\frac{8\sqrt{14}}{28} =\frac{2\sqrt{14}}{7} $
| -5.3x+2=-7.5-8.4x | | 9^x+6=20 | | 7+15-x=22 | | a=160,000(1+.05)^(20) | | Y=x+3÷x-8 | | n/16=-4.2 | | 4x+4=-3x+18 | | 7b-12=4.2 | | =3(2x−5) | | 2(x-2/3)=5/6 | | 3y-15=64 | | 21=7x+98 | | 6x+18=23x+9) | | 2a3a=16 | | 3x-4=5(x+1) | | 4x+132=68 | | –2v–7v=–45 | | a+6-4=-3 | | 67n+14=−2 | | f(3)=5(2) | | -45=9x+18 | | 0.25(84-32n)=n | | —2m=42 | | 3(2f+1)=5f+1 | | 13x+49=-3 | | x-3=111 | | 5(x+5.80)=0.87 | | 7-w=197 | | B=a-8+5 | | a^2+12a+45=0 | | 7y-2=3y+12 | | d. |